Abstract

Doctoral thesis includes synthesis of ligands, as well as synthesis and structural characterisation of complexes with potential insulin-like hypoglycaemic activity, namely VO²⁺, VO_2^+ and Zn^{2+} complexes with picolinato and β -diketonato type of ligands. Having in mind known insulin-like activity of VO(pic)₂·H₂O, complexes of VO(pic)₂ and 4-apy, DMAP or im (V1–V3), as well as aqua-analogues V4–V7 with picCN, picFF, Hhypic and prz derivatives of pic ligand were synthesised and their crystal structures determined. Both compound types crystallize in cis-octahedral form as OC-6-23 and/or OC-6-24 isomers. EPR spectroscopy confirmed the existence of V4-V7 OC-6-23 and/or OC-6-24 isomers in solutions, accompanied by partial isomerization into OC-6-42 isomer. Study of V4 and V5 at different pH (EPR and pH-metric titration) and interactions of V4-V7 compounds with blood serum proteins apo-hTf and HSA are also presented. VO_2^+ compounds **V8–V12** with two pic or prz type of ligands crystalize in ionic form with OC-6-33 or OC-6-22 isomers of cis-octahedral complex anions, while VO₂⁺ compound with pic and chlorido ligand crystallize in a shape of distorted trigonal bipyramid. Among Zn²⁺ picolinates Z1–Z22 (picCN, picFF, Hhypic, 4MeOqc) cis-trans isomerism depending on the presence of neutral O- and N-donors and steric hindrance of anionic ligands occurred. In the presence of neutral O-donor ligands (Z1-Z9) or sterically hindered Hhypic and 4MeOqc ligands (Z17, Z21, Z22) trans-octahedral OC-6-12 isomers are formed, while with mono- or bidentate N-donor ligands cis-octahedral OC-6-13 complexes are formed. Similar isomerism is present in the case of Zn^{2+} tfpb β -diketonates **Z36–Z40**. With Odonors trans-octahedral OC-6-12 isomers, contrary with N-donors cis-octahedral OC-6-33 and OC-6-32 isomers are formed. Crystal structure of VO²⁺ compound with tfpb ligands (V17) with interesting polymeric structure is also determined. With new amido and amino type of 6-substituted (di)picolinato ligands two VO²⁺ and several Zn²⁺ complexes were prepared, while ester analogue hydrolyses in solution of metal ions and forms VO_2^+ and Zn^{2+} complexes (V14, **Z23**). In the presence of VO^{2+} ions the hydrolysis of amido analogues is also common, while amino ligands are stable in VO^{2+} and Zn^{2+} solutions. VO^{2+} complex V15 with amide 7 has octahedral structure with one amido and one dipic ligand, while aqua- VO^{2+} complex V16 with amine 11 has *trans*-octahedral structure. With Zn^{2+} ions and amides monomeric, tetranuclear and polymeric compounds Z24-Z30 were formed, while with Zn^{2+} ions and amido ligands water soluble complexes Z31–Z33 were formed. Inhibition of free fatty acids release from rat adipocytes of VO^{2+} , VO_2^+ and Zn^{2+} compounds with adequate solubility in water was also defined. The most promising insulin-like inhibition has been found in the case of VO²⁺, VO₂⁺ and Zn^{2+} complexes with Hhypic ligands and of Zn^{2+} compound with amide 7.

Keywords: vanadium, zinc, coordination compounds, diabetes, hypoglycaemic activity.